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Introduction & Motivation




Given an N x N matrix A, an N— dimensional vector b and the
equation

_All A12 “e L1 bl

AN Ann| |zN bn

thatis AZ =15, solve forz = A~1}p.

The best general purpose classical algorithm (Conjugate Gradient) has
complexity O(N«x), where = ||A||[|[A™"| is the condition number of A,



Quantum linear systems problem (QLSP)

Given the classical system of linear equations prepare an | ;. .ow, Hassidim, Lioyd
PRL 103, 150502 (2009)

e-approximation of a quantum state

|fl3> = Zi:l L ‘Z> log(N) qubits sufficient.
N
\/Zizl EAk
Where A[E: l; ) f: (3317332,.. . ,QjN),

Good for obtaining global properties of the solution via z! Oz .

Best algorithms for this problem have complexity: O (log(N)x).



Quantum linear systems problem (QLSP)

Given the classical system of linear equations prepare an | ;. .ow, Hassidim, Lioyd
PRL 103, 150502 (2009)

e-approximation of a quantum state

|Cl7> = Zi:l L ‘Z> log(N) qubits sufficient.
N
\/Zizl EAk
Where Af: l; ’ f: (3317332,.. . ,QBN),

The approximate (pure or mixed) quantum state p, satisfies

1
5 1r|pe —|z)(z|] < €



Quantum linear systems problem (QLSP)

Assumptions:

e A isinvertible: condition number £ < o©
« 4| <1,

A is Hermitian (trivial generalization to non-Hermitian).

A

* Sparse A;; can be computed efficiently (or et implemented efficiently)

Let U, be a procedure that prepared the state

_ . p) = qu,\; b; |7) Will be treated
Upl0) = 102 3 o) = N as black-boxes
\/Zz‘:1 Lk '




Potential & Caveats

BQP-Complete -> Potential for exponential quantum speed-up!

Relevant to many fields: Solving differential equations, quantum machine learning,
large sparse network problems,...

BUT!

A number of assumptions must be made in order to obtain quantum speedups. These
assumptions include:

* efficient preparation of certain states, i.e. U}, |0) = |b)
* nice scaling of the condition number

* solving certain problems like computing expectation values
Aaronson (2015) "Read the fine print"

For these reasons, shown quantum speedups are typically polynomial.




Applications

e Determining the quality of a least-squares fit. Wiebe et al. (2012)

* Analyzing large sparse electrical networks. Wang (2013)

* Solving systems of linear ordinary differential equation. Berry et al. (2017)
e Estimating the hitting time of a Markov chain. Chowdhury et al. (2017)

 Computing electromagnetic scattering cross section of a target. Clader et al. (2013)
» Resource analysis of HHL algorithm by Scherer et al. (2017):
N = 332,020,680, € = 0.01, 341 qubits, 10%° gates, and 10*! measurements.



QLSP Algorithms

Main Subroutines

Previous Results

e Harrow, Hassidim, Lloyd (2008)
O(r*log(N)/e)

* Ambainis (2012)

O(rlog(N)/€”)

. Child~s, Kothari, Somma (2017)
O(rlog(N)polylog(1/€))

Hamiltonian simulation

Phase estimation / Linear
Combination of Unitaries

Amplitude Amplification / Variable-
time Amplitude Amplification
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Previous Results

e Harrow, Hassidim, Lloyd (2008)

O(x?log(N
* Ambainis (2012)
O(klog(N

. Child~s, Kothari, Somma (2017)
O(rlog(N)polylog(1/€))
e Subasi, Somma, Orsucci (2018)

(mlog(

QLSP Algorithms

Main Subroutines

)/€)
)/€°)

)/€)

Hamiltonian simulation

Phase estimation / Linear
Combination of Unitaries

Amplitude Amplification / Variable-
time Amplitude Amplification



QLSP Algorithms

Previous Results Main Subroutines
d HarrOW HaSS|d|m |_|Oyd (2008) Y Ham||ton|an S|mu|at|on
Arbain Oz(glzlog( )/€) * Phase estimation / Linear
mbainis ( ) Combination of Unitaries

O(rlog(N)/€”)

. Child~s, Kothari, Somma (2017)
O(rlog(NN)poly log(1/e))
e Subasi, Somma, Orsucci (2018)

O(rlog(N)/e)

Within two weeks of posting our result, Wen et al. PRA (2019) implemented our
algorithm in NMR to solve an 8x8 QLSP.

* Amplitude Amplification / Variable-
time Amplitude Amplification



Previous Results

e Harrow, Hassidim, Lloyd (2008)

O(x?log(N
* Ambainis (2012)
O(klog(N

. Child~s, Kothari, Somma (2017)
O(rlog(NN)poly log(1/e))
* Subasi, Somma, Orsucci (2018)

O(r log(N
* An, Lin (2019)

O(rlog(N

QLSP Algorithms

Main Subroutines

)/€)
)/€°)

)/€)

)/€)

Hamiltonian simulation

Phase estimation / Linear
Combination of Unitaries

Amplitude Amplification / Variable-
time Amplitude Amplification



Variational Algorithms

* Bravo-Prieto et al. (19)
* Yuan et al. (19)
 Rebentrost et al. (19)

* An, Lin (19)

Geared towards NISQ devices.
Heuristic algorithms, scaling poorly understood.



An AQC-inspired algorithm

PHYSICAL REVIEW LETTERS 122, 060504 (2019)

Quantum Algorithms for Systems of Linear Equations Inspired
by Adiabatic Quantum Computing

Yigit Subag1 and Rolando D. Somma
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

S

Davide Orsucci
Department of Theoretical Physics, University of Innsbruck, Innsbruck 6020, Austria

® (Received 7 June 2018; published 14 February 2019)

We present two quantum algorithms based on evolution randomization, a simple variant of adiabatic
quantum computing, to prepare a quantum state |x) that is proportional to the solution of the system of

linear equations AX = b. The time complexities of our algorithms are O (x> log(x)/€) and O(xlog(x)/e), !
where « is the condition number of A and e is the precision. Both algorithms are constructed using families 3 \

of Hamiltonians that are linear combinations of products of A, the projector onto the initial state |b), and ‘ N
single-qubit Pauli operators. The algorithms are conceptually simple and easy to implement. They are not
obtained from equivalences between the gate model and adiabatic quantum computing. They do not use
phase estimation or variable-time amplitude amplification, and do not require large ancillary systems.
We discuss a gate-based implementation via Hamiltonian simulation and prove that our second algorithm
is almost optimal in terms of k. Like previous methods, our techniques yield an exponential quantum speed-
up under some assumptions. Our results emphasize the role of Hamiltonian-based models of quantum
computing for the discovery of important algorithms. S|




Adiabatic Quantum Computing

(Our starting point is AQC, but we will use a variant in our algorithm.)

At initial time prepare the ground state of a simple Hamiltonian

H; ;) = Ei |1;)
Design a final Hamiltonian whose ground state is the desired output of the computation.

Hylibg) = Ey|y)
Interpolate from H; to H ¢ with H(s) st. H(0)=H; & H(1)=Hy.

Adiabatic theorem: if the interpolation is done slow enough the B
final ground state Wf> can be prepared with high probability. v

A
Slow enough means 1" ~ O(l/Az) /L\




QLSP — Finding the final Hamiltonian

For now assume A > 0.

Let P;- = I — |b)(b|. Observe that
Alx) o< |b)
PrA|z) =0
B

Define Hy = BB = APj-A.
* Hermitian
* Positive-semidefinite = |x) is a GS

* GSis unique



QLSP — Finding an interpolation

Define A(s) which interpolates between identity and A
A— A(s)=(1—5s)[+sA

The parametrized Hamiltonian becomes H(s) = A(s)P;- A(s)

And the eigenpathis |z(s)) oc A(s)™" |b)

That is, for each value of s, the GS encodes the solution of the LSP

A(s)Z(s) = b




QLSP — Finding an interpolation

Define A(s) which interpolates between identity and A
A— A(s)=(1—5s)[+sA
The parametrized Hamiltonian becomes H(s) = A(s)P;- A(s)
And the eigenpathis |z(s)) oc A(s)™*|b)
That is, for each value of s, the GS encodes the solution of the LSP

k=1000

1.0

1/H2§(1—8—|—5//§)2§A(8) 0.8
GAP ANALYSIS: l | | gos
A* (S) : lower bound on the gap < 0.4

0.2

0.0

00 02 04 06 08 1.0



Spectral gap amplification (Somma, Boixo 2013)
Time complexity of algorithms based on adiabatic evolution is dictated by the minimum gap.

By increasing the gap we can reduce the complexity.
B(s) = P, A(s)
H(s) = B'(s)B(s)



Spectral gap amplification (Somma, Boixo 2013)
Time complexity of algorithms based on adiabatic evolution is dictated by the minimum gap.

By increasing the gap we can reduce the complexity.
B(s) = B A(s)
H(s) = B'(s)B(s)
f

H'(s) = 0~ ® B(s) + o ® B(s)' = (B?S) B((f)T>

ancilla register

(H'(s))2 = |0)(0] @ H(s) + |[1)(1] ® B(s)B(s)" = (H(s) 0 )

(0] (1(3))10) = H(s) |

The gap of H' is quadratically bigger than that of H.




Spectral gap amplification (Somma, Boixo 2013)
Time complexity of algorithms based on adiabatic evolution is dictated by the minimum gap.

By increasing the gap we can reduce the complexity.

0) @ 1b)



Eigenpath traversal

One can use any method to follow the eigenstates of Hamiltonians H (s) and H'(s).

Using adiabatic evolution, the time complexity can be upper-bounded by O(1/A%)



Eigenpath traversal

One can use any method to follow the eigenstates of Hamiltonians H (s) and H'(s).

Using adiabatic evolution, the time complexity can be upper-bounded by O(1/A%)

H(s) H'(s)
1 1
) < A(s) - < A(s)
T~ O T - 0
We achieve T = O(x?) T =O(k) using the

randomization method.



Eigenpath traversal

One can use any method to follow the eigenstates of Hamiltonians H (s) and H'(s).

Using adiabatic evolution, the time complexity can be upper-bounded by O(1/A%)

H(s) H'(s)
1 /
T~ O T - 0
We achieve T = O(x?) T =O(k) using the

randomization method.

(A careful analysis by An, Lin (2019) obtained the same scaling with AQC by choosing a
proper scheduling function.)



Randomization Method (Boixo, Knill, Somma 2009)
Sq = 1

Quantum Zeno Effect: By performing a sequence of energy measurements wrt
sufficiently close Hamiltonians, we can stay in the corresponding eigenspace.



Randomization Method (Boixo, Knill, Somma 2009)
Sq = 1

Quantum Zeno Effect: By performing a sequence of energy measurements wrt
sufficiently close Hamiltonians, we can stay in the corresponding eigenspace.

Imperfect measurements can be simulated by evolving with the corresponding

Hamiltonian for random time. This reduces coherences between eigenstates and
thereby simulates a measurement.

0= 3 ot BBl — 3 e ([ tPrire 50 ) B, 8



Randomization Method (Boixo, Knill, Somma 2009)
Sq = 1

Quantum Zeno Effect: By performing a sequence of energy measurements wrt
sufficiently close Hamiltonians, we can stay in the corresponding eigenspace.

Imperfect measurements can be simulated by evolving with the corresponding

Hamiltonian for random time. This reduces coherences between eigenstates and
thereby simulates a measurement.

0= Z Prnt | En) (En| — Z Onn' (/ dt/Pr(t)ei(EnEn/)t) BB,

o ~
Unif [0, 27 /A] = Y’




Algorithm 1

Given condition number ~ and precision €

> Set ¢ = O(log™ (k) /e)

. 1 — k—I/4
»For j=1,...,q ,let s;= o :
and t; be sampled from the uniform distribution [O, - 1 ]
| | A*(s;)
> Apply e #tat(sa)  omit1H(s1) 1o |p). \

Bound on the gap

q
The average time complexity is T := Z(tj> = O (k”log(k)/€).
j=1



Algorithm 2 (with spectral gap amplification)

S3

52

Given condition number k and precision € 50 = 0 o itz Hlss), 99
> Set ¢ = O(log”(k)/€) 0) & [p) e~ L)
. 1 — k—I/4
»For j=1,...,q ,let s;=
1 — k71 )
-
and t; be sampled from the uniform distribution |0, A (s}
> Apply e~ itall'(sa)  e—itiH'(s1) 4o |0) @ |b). .

Bound on the
amplified gap

The average time complexity is T := Z(tj> O (klog(k)/¢€)
j=1



Let A|)\) = A |N),

1
\b)oc\)\:1>+g|)\:1//<;>
and kK = 10.

The dynamics is restricted
to a two-dimensional
Hilbert space.

z) x (A=1)+ |A=1/kK)

Consider 7 steps of RM:
q="71

Example

A= 1)

)~







Example

s1 ~ 0.36

t1 €1[0,13.6] — t; = 9.74



9.74

t1 €[0,13.6] — #1



Example

so =~ 0.59

to €[0,28.2] —> to = 17.0



Example

so =~ 0.59

to €[0,28.2] —> to = 17.0



Example

S3 = 0.74

ts € [0,55.2] —> t5 = 30.1



Example

S3 = 0.74

ts € [0,55.2] —> t5 = 30.1



Example

Sq ~ 0.83

th €1]0,102.2] —> t4 = 43.3



Example

th €1]0,102.2] —> t4 = 43.3



Example

Sy ~ 0.90

ts € [0,181.0] —> 5 = 116.9



Example

Sy ~ 0.90

DY

ts € [0,181.0] —> 5 = 116.9



Example
se ~ 0.96

l b},/f Lo \

t € 10,320.3] —> tg = 140.2



Example

se ~ 0.96

t € 10,320.3] —> tg = 140.2



Example

s7~ 1.0

tz € [0,628.3] —» t7 = 560.3



Example

s7~ 1.0

tz € [0,628.3] —> t7 = 560.3



Example

Sample run of the Randomization Method




Example

Sample run of the Randomization Method




Example

Sample run of the Randomization Method

l b},/ /—P\




Example

Sample run of the Randomization Method




Example

Average of 100 runs
S — 0

4

exact ground state

mixed state generated
by the algorithm

pure state generated at \ WL

each run of RM




Example

Average of 100 runs

s1 ~ 0.36

o]

—

exact ground state A

mixed state generated
by the algorithm

pure state generated at \ | ~

each run of RM




Example

Average of 100 runs

so ~ 0.59

exact ground state

mixed state generated
by the algorithm

pure state generated at | \_} ! ﬂ

each run of RM




Example

Average of 100 runs

s3 ~ 0.74

exact ground state

mixed state generated
by the algorithm

pure state generated at ‘ \_t d d_

each run of RM




exact ground state

mixed state generated
by the algorithm

pure state generated at
each run of RM

Example

Average of 100 runs

sS4~ 0.83




Example

Average of 100 runs

Sy 0.90
B .. . o'.. e '..0. ;
exact ground state e /o ..
:’ .0:!‘ o ¢ 0.‘ .
mixed state generated o [0\ 0 Do
by the algorithm At W WA |
e a® L ]
pure state generated at " N ~
each run of RM




Example

Average of 100 runs

se ~ 0.96

exact ground state S50 :. [
:. S To v "‘ :
mixed state generated Ve M. .
by the algorithm \ ,:\‘ = i &
“Toxl 7 A - g
pure state generated at N e Ve
each run of RM Qe



Example

Average of 100 runs

s7~ 1.0

exact ground state -

mixed state generated
by the algorithm

pure state generated at
each run of RM




Example

g = 1000

T




Conclusions

Our algorithms are conceptually simple and don't rely on complex subroutines. They only
use Hamiltonian simulation.

The Hamiltonians involved in our algorithms are easily described in terms of the inputs of
the problem and can be efficiently simulated in a digital QC.

At most 2 additional ancillas are needed, beyond what is necessary for Hamiltonian
simulation.

Phase estimation and VTAA, on the other hand, require several ancillary qubits (beyond
what is necessary for Hamiltonian simulation) and a lot of controlled operations.

Our results emphasize the importance of considering models of quantum computing,
which go beyond the gate-based model, for discovering novel quantum algorithms.



optimization

Quantum computer Classical computer
0 —

A variational algorithm ——
g - <o | (iesr)
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Variational Quantum Linear Solver

Carlos Bravo-Prieto,’:2:* Ryan LaRose,* M. Cerezo,!:® Yigit Subas1,® Lukasz Cincio,! and Patrick J. Coles!:*

! Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
' 2 Barcelona Supercomputing Center, Barcelona, Spain.
3 Institut de Ciéncies del Cosmos, Universitat de Barcelona, Barcelona, Spain.

= 1=

(8%

IO) '_ [

4 Department of Computational Mathematics, Science,
and Engineering & Department of Physics and Astronomy,

Michigan State University, East Lansing, MI 48823, USA.
5 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA
¢ Computer, Computational and Statistical Sciences Division,
Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Previously proposed quantum algorithms for solving linear systems of equations cannot be im-
plemented in the near term due to the required circuit depth. Here, we propose a hybrid quantum-
classical algorithm, called Variational Quantum Linear Solver (VQLS), for solving linear systems on
near-term quantum computers. VQLS seeks to variationally prepare |z) such that A|z) o« |b). We
derive an operationally meaningful termination condition for VQLS that allows one to guarantee
that a desired solution precision € is achieved. Specifically, we prove that C' = €*/k?*, where C is
the VQLS cost function and & is the condition number of A. We present efficient quantum circuits
to estimate C, while providing evidence for the classical hardness of its estimation. Using Rigetti’s
quantum computer, we successfully implement VQLS up to a problem size of 1024 x 1024. Finally,
we numerically solve non-trivial problems of size up to 2°° x 2°°. For the specific examples that we
consider, we heuristically find that the time complexity of VQLS scales efficiently in €, k, and the
system size V.
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arXiv:1909.05820v2




Variational quantum linear solver

optimization

Quantum computer

Classical computer

(itc>7)

min C (o)

(ifc<y )

L
A= ZCzAz and U, such that Uj|0) = |b)

input

7 (]
R R R R RH-E R
_ Rl R R R RN RFR
(R R BB R R R
Bl R R R R R R
(R 1




Variational quantum linear solver

optimization
. L
Quantum computer Classical computer | ««—{ 4= ¢4, and U such that U[0) = |b)
0 B = (8" (- input
|0) << it c= ) output
e | :
10) F(A) min C'(a) 0) — L
H (8
10) C(a) 3\ Xopt 0 V(aopt) B }|m> S
.|V : (ifo<y) >y e B
10)
0= =

The expectation value of the final Hamiltonian of the adiabatic approach is a valid
cost function.

H = AP;-A
z(a)) = V(a)|0) Caola) = (z(a) |H|z(a))
Cqg =0 = Alz(a)) x |b)



optimization

Variational quantum linear solver

Quantum computer

|0)

10)
10)

10)

- V@

10)

F(A)

Classical computer

aopt

T
4= ZCIAI and U such that U|0) = |b)

=

input

output

< (itc>7)
min C'(a)

Cle) | ~
(@) (ifCc<vy)

|2

)

= Y
V (aopt) Ha?) —

)

)

The expectation value of the final Hamiltonian of the adiabatic approach is a valid

cost function.

z(e)) = V(a)|0)

H = AP;-A

Co(a) = (z(a) [H| z(a))

Cg =0 < Alz(a)) o |b)

Cost functions with better trainability
have also been constructed by
requiring local closeness of the
quantum states A |x)and |b).



Operational Meaning of Cost Function
It can be shown that
k°Ca > D(|z)(z], |z (a))z (o) |)?

This means that in order to guarantee an error less than €, the expectation value
of the Hamiltonian has to be confirmed to be smaller than

& > COg = (z(a) |H|z(a))



Operational Meaning of Cost Function

It can be shown that

k*Ca = D(|z)(z], |z (a){z () |)?

This means that in order to guarantee an error less than €, the expectation value
of the Hamiltonian has to be confirmed to be smaller than

& > COg = (z(a) |H|z(a))

Because of sampling noise, this means the number of runs scales as:

4
N ~ B
runs 64



Variational quantum linear solver
Numerical Experiments

1 n n—1
A= c (ZUJX —I—JZJJ-Z%ZH +771)
j=1 j=1

b) = H®"|0)

x 10% ' T

eI: 0()1I

Number of iterations
needed to guarantee
desired precision is

linear in n, i.e. log(N).

time-to-solution

! ! 1 : 1 , l ; |
10 15 20 25 30
number of qubits n=log(N)

(]



Variational quantum linear solver
Experiments on Rigetti’s QPU

n n—1
A= % (Z o +J> ofol, + 771) (1024x1024)
j=1 j=1

b) = H®"|0)

— QVM =
——  Aspen-7-10Q-B Run 1

0.6 [ ——  Aspen-7-10Q-B Run 2 |

cost

04

0.2

) : 1 ! : |
0 50 iteration 100 150



Conclusions

Largest implementation on real hardware: n = 10 qubits, 1024 x 1024
Numerical solution to non-trivial problems of size up to 250 x 250
Efficient circuits for cost function evaluation

Trainable local cost functions

Conditions that guarantee desired error

Heuristically analyzed scaling with respectto €, x, V.



Complexity of verification

PRX QUANTUM 2, 010315 (2021)

Complexity of Quantum State Verification in the Quantum Linear Systems
Problem

w2

Rolando D. Somma®!-* and Yigit Subag1©2:

' Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

“ Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, USA

®  (Received 14 August 2020; accepted 16 December 2020; published 27 January 2021)

We analyze the complexity of quantum state verification in the context of solving systems of linear
equations of the form AX = b. We show that any quantum operation that verifies whether a given quantum
state is within a constant distance from the solution of the quantum linear systems problem requires ¢ =
Q(x) uses of a unitary that prepares a quantum state |b}, proportional to b, and its inverse in the worst
case. Here, « is the condition number of matrix 4. For typical instances, we show that g = Q(/x) with
high probability. These lower bounds are almost achieved if quantum state verification is performed using
known quantum algorithms for the quantum linear systems problem. We also analyze the number of copies
of |b) required by verification procedures of the prepare-and-measure type. In this case, the lower bounds
are quadratically worse, being Q2 (k2) in the worst case and 2 (k) in typical instances with high probability.
We discuss the implications of our results to known variational and related approaches to this problem,
where state preparation, gate, and measurement errors will need to decrease rapidly with « for worst-case
and typical instances if error correction is not used, and present some open problems.

THEY STILL ALL LOOK
THE SAME TO ME.




Quantum State Verification (QSV) Problem

Given arbitrarily many copies of p, output a random bit r as follows:

B >2/3 if D,,<1/8,
Pr(r=1) { <1/3 if D,,>1/2.

1
where D, , = =Tr|p — |x)(x|| is the trace distance which is a measure of

distinguishability between two quantum states.




Protocol for QSV

—————————————————————————————————————————————————————

s —
i " 501 9 09 qu A E
=il A 2 o 5 atl =
s t ? S — =
= U = D U [t U (==
""""""""""""""" & T, e T T A
___________________________________________________ -
&

Inputs: A and b

Output: A quantum operation &£



Protocol for QSV

—————————————————————————————————————————————————————

: —
g0 = E 01 g EO’ Og+1
=~ Fi | F3 QI | Y P =
| ¢ g ¢ r
' = U = D U [t U (==
""""""""""""" g TG, e, T
___________________________________________________ B R
E

Inputs: A and b

Output: A quantum operation &
& takes as input m copies of p and outputs a single bit r



Protocol for QSV

_________________________

————————————————————————————————————————————————————————

= —
og = 501 09 EU Og+1
p®m|:> Fi ; Fo : i d §+1 |:q> f,a
¢ g ¢ r
= U = D U [t U (==
"""""""""""""" g T, e, TTTEG
___________________________________________________ e
E
We want:

B >2/3 if D,,<1/8,
Pr(r=1) { <1/3 if D,,>1/2.



Arbitrary Instances

Main result: Consider any instance of the QLSP, specified by A and l;, and any
protocol for QSV as described. Then, for all quantum states p that satisty D, , < 1/8,
the number of cUblLl's required to implement £ oninput oy = p®™ satisfies
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Worst-Case

Main result: Consider any instance of the QLSP, specified by A and 5, and any
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Worst-Case

Main result: Consider any instance of the QLSP, specified by A and 5, and any
protocol for QSV as described. Then, for all quantum states p that satisty D, , < 1/8,
the number of cUblLl's required to implement £ oninput oy = p®™ satisfies
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Worst case: There exist instances of the QLSP such that

1 1 Verification of solution
Pr dAb > — K| > —=. is asymptotically as hard
13 6 as solving the problem!



Outline of Proof (Worst-Case)

For given input state |b) we construct another state |b") which is close to it, but
such that the corresponding solutions of QLSP, |x) and |z") are as far from each

other as possible.
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Outline of Proof (Worst-Case)

For given input state |b) we construct another state |b") which is close to it, but
such that the corresponding solutions of QLSP, |x) and |z") are as far from each

other as possible.

Let A|A) = A|A) with Apin=1/k and A\,.x=1. Consider this instance:
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Outline of Proof (Worst-Case)

For given input state |b) we construct another state |b") which is close to it, but
such that the corresponding solutions of QLSP, |x) and |z") are as far from each
other as possible.
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If p=|x){x|: QsV for AZ =10 should accept p [QSV alg. has to query the]
QSV for Az’ = should reject p oracle (x) times.




Typical Instances

For typical instances we show that HA‘l ‘b> H ~ \/E

1 1 — deeN/x
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Prepare and Measure Scheme
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Conclusions

e Our results place limitations for QLSP algorithms that require a verification step, such as
known variational algorithms.

e Even disregarding the complexity of the optimization loop, the asymptotic complexity of the
verification step alone is at least that of optimal algorithms for solving QLSP.

* For example, high precision cost function evaluation necessitates quantum circuits to be
executed many times and with high fidelity. The latter suggests that quantum error
correction will be needed.

. CUbjEl is treated as a "black box" and no assumption is made on the inner workings of such
unitaries. If such knowledge is provided, it may be exploited for more efficient QSV and for
solving the QLSP faster.

Future directions:
* Relaxations of the QLSP that circumvent our bounds (i.e. goal is not to prepare \a:) ).
* Analyze the complexity of QSV in terms of resources other than Uy.

* Generalize and apply our proof technique to related state-verification problems.



Thank You!



